
Embedding Static Analysis into Tableaux and
Sequent based Frameworks

Tobias Gedell

Department of Computing Science
Chalmers University of Technology

SE-412 96 Göteborg, Sweden
gedell@cs.chalmers.se

Abstract. In this paper we present a method for embedding static analysis into
tableaux and sequent based frameworks. In these frameworks, the information
flows from the root node to the leaf nodes. We show that the existence of free
variables in such frameworks introduces a bi-directional flow, which can be used
to collect and synthesize arbitrary information.
We use free variables to embed a static program analysis in a sequent style the-
orem prover used for verification of Java programs. The analysis we embed is a
reaching definitions analysis, which is a common and well-known analysis that
shows the potential of our method.
The achieved results are promising and open up for new areas of application of
tableaux and sequent based theorem provers.

1 Introduction

The aim of our work is to integrate static program analysis into theorem provers used
for program verification. In order to do so, we must bridge the mismatch between the
synthetic nature of static program analysis and analytic nature of tableaux and sequent
calculi. One of the major differences is the flow of information.

In a program analysis, information is often synthesized by dividing a program into
its subcomponents, calculating some information for each component and then merging
the calculated information. This gives a flow of information that is directed bottom-up,
with the subcomponents at the bottom.

Both tableaux and sequent style provers work in the opposite way. They take a
theorem as input and, by applying the rules of their calculi, gradually divide it into
branches, corresponding to logical case distinction, until all branches can be proved or
refuted. In a ground calculus, there is no flow of information between the branches.
Neither is there a need for that since the rules of the calculus only extend the proof
by adding new nodes. Because of this, the information flow in a ground calculus is
uni-directional—directed top-down, from the root to the leafs of the proof tree.

Tableaux calculi are often extended withfree variableswhich are used for handling
universal quantification (in the setting of sequent calculi, free variables correspond to
meta variables, which are used for existential quantification) [Fit96]. Adding free vari-
ables breaks the uni-directional flow of information. When a branch chooses to instan-
tiate a free variable, the instantiation has to be made visible at the point where the free

variable was introduced. Therefore, some kind of information flow backwards in the
proof has to exist. By exploiting this bi-directional flow we can collect and synthesize
arbitrary information which opens up for new areas of application of the calculi.

We embed our program analysis in a sequent calculus using meta variables. The rea-
son for choosing a program analysis is that logics for program verification could greatly
benefit from an integration with program analysis. An example of this is the handling
of loops in programs. Often a human must manually handle things like loops and recur-
sive functions. Even for program constructs, which a verification system can cope with
automatically, the system sometimes performs unnecessary work. Such a system could
benefit from having a program analysis that could cheaply identify loops and other pro-
gram constructs that can be handled using specialized rules of the program logics that
do not require user interaction. An advantage of embedding a program analysis in a
theorem prover instead of implementing it in an external framework, is that it allows
for a closer integration of the analysis and prover.

The main contributions of this work are that:

– We show how synthesis can be performed in a tableau or sequent style prover,
which opens up for new areas of application.

– We show how the rules of a program analysis can be embedded into a program
logic and coexist with the original rules by using a tactic language.

– We give a proof-of-concept of our method. We do this by giving the full embedding
of a program analysis in an interactive theorem prover.

The outline of this paper is as follows: In Section 2 we elaborate more on how we
use the bi-directional flow of information; In Section 3 we briefly describe the theorem
prover used for implementing our program analysis; In Section 4 we describe the pro-
gram analysis; in Section 5 we present the embedding of the analysis in the theorem
prover; in Section 6 we draw some conclusions; and in Section 7 we discuss future
work.

2 Flow of Information

By using the mechanism for free variables we can send information from arbitrary
nodes in the proof to nodes closer to the root. This is very useful to us since our program
analysis needs to send information from the subcomponents of the program to the root
node. In a proof, the subcomponents of the program correspond to leaf nodes. To show
how it works, consider a tableau created with a destructive calculus where, at the root
node, a free variableI is introduced. WhenI is instantiated by a branch closure, the
closing substitution is applied to all branches whereI occurs. This allows us to embed
various analyses. One could, for example, imagine a very simple analysis that finds out
whether a propertyP is true for any branch in a proof. In order to do so, we modify
the closure rule. Normally, the closure rule tries to find two formulasϕ and¬ψ in the
same branch and a substitution that unifiesϕ andψ. The new closure rule is modified
to search for a closing substitution for a branch and if it finds one, check whetherP is
true for the particular branch. If it is, then the closing substitution is extended with an
instantiation of the free variableI to a constant symbolc. We can now use this calculus

#

{ I = branch(IL, IR)}

oooooooooo

OOOOOOOOOO

#

#

��
��

�
??

??
? { IL = branch(ILL, ILR)} #

��
��

�
??

??
?{ IR = branch(IRL, IRR)}

#
{ ILL = info1}

#
{ ILR = info2}

#
{ IRL = info3}

#
{ IRR = info4}

Fig. 1.Example tableau

to construct a proof as usual and when it is done, check whetherI has been instantiated
or not. If it has, then we know thatP was true for at least one of the branches. Note that
we are not interested inwhat I was instantiated to, just the fact that itwasinstantiated.

There is still a limit to how much information that can be passed to the root node.
It is not possible to gather different information from each branch closure since they all
use the same variable,I , to send their information. In particular, the reaching definitions
analysis that we want to embed needs to be able to compute different information for
each branch in the proof.

This can be changed by modifying the extension rule. When two branches are cre-
ated in a proof, two new free variables,IL andIR, are introduced andI instantiated to
branch(IL, IR). IL is used as the newI -variable for the left branch andIR for the right
branch. By doing this we ensure that each branch has its own variable for sending infor-
mation. This removes the possibility of conflicting instantiations, since eachI -variable
will be instantiated at most once, either by extending or closing the branch to which it
belongs.

When the tableau shown in Figure 1 has been closed, we get the instantiation ofI ,
which will be the termbranch(branch(info1, info2),branch(info3, info4)) that contains
the information collected from all four branches. We have now used the tableau calculus
to synthesize information from the leaf nodes.

We are now close to being able to implement our program analysis. The remaining
problem is that we want to be able to distinguish between different types of branches.
An example of this is found in Section 4.2 where different types of branches compute
different collections of equations. We overcome this problem by, instead of always us-
ing the function symbolbranch, allowing arbitrary function symbols when branching.

2.1 Non Destructive Calculi

In a non destructive constraint tableau, as described in [Gie01], it is possible to embed
analyses using the same method.

In a constraint tableau, each noden has asinkobject that contains all closing substi-
tutions for the sub tableau havingn as its top node. When adding a node to a branch, all
closing substitutions of the branch are added to the node’s sink object. The substitutions
in the sink object are then sent to the sink object of the parent node. If the parent node is
a node with more than one child, it has amergerobject that receives the substitution and
checks whether it is a closing substitution for all children. If it is, then it is propagated
upwards to the sink object of the parent node, otherwise it is discarded. If the parent
node only has one child, the substitution is directly sent to the node’s parent node.

A tableau working like this is called non destructive since the free variables are
never instantiated. Instead, a set of all possible closing instantiations is calculated for
each branch and propagated upwards. When a closing substitution reaches the root
node, the search is over since we know that it closes the entire tableau.

Using our method in a non destructive constraint tableau is easy. We modify the
sink object of the root node to not only, when a closing substitution is found, tell us that
the tableau is closable but also give us the closing substitution. The infrastructure with
the sink objects could also make it easy to implement some of the extensions described
in Section 7.

3 The KeY Prover

For the implementation, we choose an interactive theorem prover with a tactic program-
ming language, the KeY system [ABB+04]. The KeY system is a theorem prover for the
Java Card language that uses a dynamic logic [Bec01]. The dynamic logic is a modal
logic in which Java programs can occur as parts of formulas. An example of this is the
formula,

<{ i = 1; }> i > 0 ,

that denotes that after executing the assignmenti = 1; the value of the variablei is
greater than 0.

The KeY system is based on a non destructive sequent calculus with a standard
semantics. It is well known that sequent calculi can be seen as the duality of tableaux
calculi and we use this to carry over the method described in Section 2 to the sequent
calculus used by KeY.

3.1 Tactic Programming Language

Theorem provers for program verification typically need to have a large set of rules at
hand to handle all constructs in a language. Instead of hard-wiring these into the core of
the theorem prover, one can opt for a more general solution and create a domain specific
tactic language, which is used to implement the rules.

The rules written in the tactic language of KeY are called taclets [BGH+04]. A taclet
can be be seen as an implementation of a sequent calculus rule. In most theorem provers
for sequent calculi, the rules perform some kind of pattern matching on sequents. Typi-
cally, the rules consist of a guard pattern and an action. If a sequent matches the guard
pattern then the rule is applied and the action performed on the sequent. What it means

for the pattern of a taclet to match a sequent is that there is a unifying substitution for
the pattern and the sequent under consideration. The actions that can be performed in-
clude closing a proof branch, creating modified copies of sequents, and creating new
proof branches.

We now have a look at the syntax of the tactic language and start with one of the
simplest rules, theclose_by_true rule.

close_by_true {
find (==> true)
close goal
};

The pattern matches sequents wheretruecan be found on the right hand side. Iftrue
can be found on the right hand side, we know that we can close the proof branch under
consideration, which is done by theclose goal action.

If we, instead of closing the branch, want to create a modified copy of the sequent
we use thereplacewith action.

not_left {
find (!b ==>)
replacewith (==> b)

};

If we find a negated formulab on the left hand side we replace it withb on the right
hand side.1 The proof branch will remain open, but contain the modified sequent. We
can also create new proof branches by using multiplereplacewith actions.

So far, we have only considered sequents that do not contain embedded Java pro-
grams. When attaching programs to formulas, one has to choose a modality operator.
There are a number of different modality operators having different semantics. The dia-
mond operator<{p}>φ says that there is a terminating execution of the programp after
which the formulaφ holds. The box operator[{p}] φ says that after all terminating exe-
cutions the formulaφ holds. For our purpose, the modalities do not have any meaning
since we are not trying to construct a proof in the traditional way. Regardless of this,
the syntax of the taclet language forces us to have a modality operator attached to all
programs. We, therefore, arbitrarily choose to use the diamond operator. In the future,
it would be better to have a general-purpose operator with a free semantics that could
be used for cases like this.

As an example of a taclet matching an embedded Java program, consider the follow-
ing taclet, that matches an assignment of a literal to a variable attached to the formula
trueand closes the proof branch:

term_assign_literal {
find (==> <{#var = #literal;}>(true))
close goal

};

1 Note thatΓ and∆ are only implicitly present in the taclet.

4 Reaching Definitions Analysis

The analysis we choose to implement using our technique isreaching definitions anal-
ysis[NNH99]. This analysis is commonly used by compilers to perform several kinds of
optimization such as, for example, loop optimization and constant computation [ASU86].
The analysis calculates which assignments may reach each individual statement in a
program. Consider the following program, consisting of three assignments, where each
statement is annotated with a label so that we can uniquely identify them.

a
0
= 1; b

1
= 1; a

2
= 1;

Let us look at the statement annotated with 1. The statement executed before it

(which we will call its previous statement) is the assignmenta
0
= 1; and sincea has not

yet been reassigned it still contains the value 1. We say that the assignment annotated
with 0 reachesthe statement annotated with 1. For each statement, we calculate the
set of labels of the assignments that reach the statement before and after it has been
executed. We call these sets the entry and exit sets. For this example, the label 0 will
be in the entry set of the last assignment but not in its exit set, since the variablea is
re-assigned. We do not just store the labels of the assignments in the sets, but also the
name of the variable that is assigned. The complete entry and exit sets for our example
program look as follows:

labelEntry Exit
0 {} {(a, 0)}
1 {(a, 0)} {(a, 0), (b, 1)}
2 {(a, 0), (b, 1)} {(b, 1), (a, 2)}

It is important to understand that the results of the analysis will be anapproximation.
It is undecidable to calculate the exact reaching information, which can easily be proven
by using the halting problem. We will, however, ensure that the approximation issafe,
which in this context means that if an assignment reaches a statement then the label of
the assignment must be present in the entry set of that statement. The reverse may not
hold, a label of an assignment being present in an entry set of a statement, does not
necessarily mean that the assignment may reach that statement.

It is easy to see that for any program, a sound result of the analysis would be to let
all entry and exit sets be equal to the set of all labels occurring in the program. This
result would, of course, not be useful; what we want are as precise results as possible.

The analysis consists of two parts: a constraint-generation part and a constraint-
solving part. The constraint-generation part traverses the program and generates a col-
lection of equations defining the entry and exit sets. The equations are then solved by
the constraint-solving part that calculates the actual sets.

4.1 Input Language

As input language, we choose a very simple language, the WHILE-language, which
consists of assignments, block statements and if- and while-statements. We choose a

simple language because we do not want to wrestle with a large language but instead
show the concept of how the static program analysis can be implemented.

In the language, a program consists of a number of statements.

Programs program::= stmt+

Statements stmt ::= var
lbl
= expr;

| if lbl (term) stmtelsestmt
| whilelbl (term) stmt
| {stmt∗}

lbl ranges over the natural numbers and will be unique for each statement. We do
not annotate block statements since they are just used to group multiple statements.

To simplify our analysis, we impose the restriction that all expressionsexpr must
be free from side-effects. Since removing side-effects from expressions is a simple and
common program transformation, this restriction is reasonable to make.

4.2 Rules of the Analysis

We now look at the constraint-generation part of the analysis and start by defining the
collections of equations that will be generated. These equations will characterize the
reaching information in the analyzed program.

Equations Π ::= /0
| Entry (lbl) = Σ
| Exit (lbl) = Σ
| Π∧Π

(1)

/0 is the empty collection of equations.Entry (lbl) = Σ andExit (lbl) = Σ are equations
defining the entry and exit sets of the statement annotated withlbl to be equal to the
set expressionΣ. We let∧ be the conjunction operator that merges two collections of
equations.

The set expressions,

Set expressions Σ ::= /0
| (var, lbl)
| Entry(lbl)
| Exit(lbl)
| Σ∪Σ
| Σ-Σ

, (2)

are used to build up the entry and exit sets./0 is the empty set (the overloading of
this symbol will not cause any confusion).(var, lbl) is the set consisting of only a single
reaching assignment.Entry (lbl) andExit(lbl) refer to the values of the entry and exit
sets of the statement annotated withlbl. ∪ and- are the union and difference operators.

The rules of the analysis are of the form`0` s ⇓ `1 : Π, wheres is the statement un-
der consideration,̀0 is the label of the statement executed befores (we will sometimes
call this statement thepreviousstatement),̀1 the label of the last executed statement in
s, andΠ the equations characterizing the reaching information of the statements.

The intuition behind this form is that we need to know the label of the statement
executed befores because we will use its exit set when analyzings. After we have
analyzeds, we need to know the label of the last executed statement ins (which will
often bes itself) because the statement executed afters needs to use the right exit set.
Then, the most important thing to know is, of course, what equations were collected
when analyzings.

In the assignment rule,

ASSIGN

`0 ` x
`1= e; ⇓ `1 : Entry (`1) = Exit(`0) ∧

Exit(`1) = (x, `1)∪ (Entry (`1) −
[

`∈lbl
(x, `))

,

we know that the reaching assignments in the entry set will be exactly those that were
reaching after the previous statement was executed. This is expressed by the equation
Entry (`1) = Exit(`0). For the exit set, we know that all previous assignments ofx will
no longer be reaching. The assignments of all other variables will remain untouched.
We therefore let the exit set be equal to the entry set from which we have first removed
all previous assignments ofx and then added the assignment(x, `1). This is expressed
by the equationExit(`1) = (x, `1)∪ (Entry (`1) −

S
`∈lbl(x, `)).

So far, we have not seen the need for including the label of the previous statement
in the rules. This is illustrated by the rule for if-statements:

IF

`0 ` s0 ⇓ `2 : Π0 `0 ` s1 ⇓ `3 : Π1

`0 ` if `1(e) s0 elses1 ⇓ `1 : Π0 ∧ Π1 ∧ Entry (`1) = Exit(`0) ∧
Exit(`1) = Exit(`2)∪Exit(`3)

For an if-statement, the entry set will be equal to the exit set of the previous state-
ment, which is expressed by the equationEntry (`1) = Exit(`0). When analyzing the
two branchess0 ands1, we usel0 as the label of the previous statement since it is impor-
tant that they, when referring to the exit set of the previous statement, useExit(l0) and
not the exit set of the if-statement. From the two branches, we get the collections of the
generated equationsΠ0 andΠ1, along with the labelsl2 andl3, which are the labels of
the last executed statements ins0 ands1. Since we do not know which branch is going to
be taken, we must approximate and assume that both branches can be taken. The exit set
of the if-statement will therefore be equal to the union of the exit set of the last executed
statements ins0 ands1, expressed by the equationExit(`1) = Exit(`2)∪Exit(`3).

The rule for while-statements,

WHILE

`1 ` s ⇓ `2 : Π0

`0 ` while`1(e) s ⇓ `1 : Π0 ∧ Entry (`1) = Exit(`0)∪Exit(`2) ∧
Exit(`1) = Entry (`1)

,

differs significantly from the rule for if-statements. For the entry set, we include the
exit set of the last executed statement before the loop, but also the exit set of the last

executed statement in the loop body. We must do this because there are two execution
paths leading to the while loop. The first is from the statement executed before the loop,
and the second from executing the loop body. For the exit set, we do not know if the
body was executed or not. We could, therefore, let the exit set be equal to the union
of the entry set of the while-statement and the exit set of the last executed statement
in s. Since this is exactly what the entry set is defined to be, we just let the exit set
be equal to the entry set. When analyzing the body of the loop we must once again
approximate. The first times is executed, it should use the exit set ofl0, since that was
the last statement executed. The second time and all times after that, it should instead
use the exit set ofl1, since the body of the while loop was the last statement executed.
We approximate this by not separating the two cases and always usel1 as the label of
the previous statement.

We do not have a special rule for programs. Instead, we treat a program as a block
statement and use the rules for sequential statements, which should not require much
description:

SEQ-EMPTY

`0 ` {} ⇓ `0 : /0

SEQ

`0 ` s1 ⇓ `1 : Π1 · · · `n−1 ` sn ⇓ `n : Πn

`0 ` {s1 . . . sn} ⇓ `n : Π1 ∧ ·· · ∧ Πn

5 Embedding the Analysis into the Prover

5.1 Encoding the Datatypes

In order to encodeΣ, Π, and labels, we must declare the types we want to use. We
declareVarSet which is the type ofΣ, Equations which is the type ofΠ andLabel
which is the type of labels. The type of variable names,Quoted, is already defined by
the system.

In the constructors forΣ, defined by (2), we have, for convenience, replaced the
difference operator with the constructorCutVar . CutVar (s, x) denotes the set expres-
sions−

S
`∈lbl(x, `). Our constructors are defined as function symbols by the following

code:

VarSet Empty;
VarSet Singleton(Quoted, Label);
VarSet Entry(Label);
VarSet Exit(Label);
VarSet Union(VarSet, VarSet);
VarSet CutVar(VarSet, Quoted);

The constructors forΠ, defined by (1), are defined analogously to the ones forΣ:

Equations None;
Equations EntryEq(Label, VarSet);
Equations ExitEq(Label, VarSet);
Equations Join(Equations, Equations);

The KeY system does not feature a unique labeling of statements so we need to
annotate each statement ourselves. In order to generate the labels we define theZero
andSuccconstructors with which we can easily enumerate all needed labels. The first
label will beZero, the secondSucc(Zero), the thirdSucc(Succ(Zero)), and so on.

Label Zero;
Label Succ(Label);

Since the rules of the analysis refer back to the exit set of the previous statement,
there is a problem with handling the very first statement of a program (which does not
have any previous statement). To solve this problem we define the labelStart which we
exclusively use as the label of the (non-existing) statement before the first statement.
When solving the equations we let the exit set of this label,Exit(Start) , be the empty
set.

Label Start;

Since one can only attachformulasto embedded Java programs, we need to wrap
our parameters in a predicate. The parameters we need are exactly those used in our
judgments,

`0 ` s ⇓ `1 : Π .

We wrap the label of the previous statement,`0, the label of the last executed state-
ment,`1, and the collection of equations,Π, in a predicate calledwrapper(we do not
need to include the statementssince the wrapper will be attached to it). In the predicate,
we also include two labels needed for the generation of the labels used for annotating
the program: the first unused label before annotating the statement and the first unused
label after annotated the statement. The wrapper formula looks as follows:

wrapper(Label, Label, Equations, Label, Label);

5.2 Encoding the Rules

Before implementing the rules of our analysis as taclets, we declare the variables that
we want to use in our taclets. These declarations should be fairly self explanatory.

program variable #x;
program simple expression #e;
program statement #s, #s0, #s1;
Equations pi0, pi1, pi2;
Label lbl0, lbl1, lbl2, lbl3, lbl4, lbl5;
Quoted name;

We now look at how the rules of the analysis are implemented and start with the rule
for empty block statements. When implemented as a taclet we let it match an empty
block statement, written as<{ {} }> , and a wrapper formula where the first argument
is equal to the second argument, the collection of equations is empty, and the fourth

argument is equal to the fifth. The formula pattern is written aswrapper(lbl0, lbl0,
None, lbl1, lbl1). The action that should be performed when this rule is applied is that
the current proof branch should be closed. This is the case because the Seq-Empty rule
has no premises. The complete taclet is written as follows:

rdef_seq_empty {
find (==> <{{}}>(wrapper(lbl0, lbl0, None, lbl1, lbl1)))
close goal
};

The rule for non-empty block statements is a bit more tricky. The rule handles an
arbitrary number of statements in a block statement. This is, however, hard to express in
the taclet language. Instead, we modify the rule to separate the statements into the head
and the trailing list. This is equivalent to the original rule except that a block statement
needs one application of the rule for each statement it contains. After being modified,
the rule looks like this, where we let ¯s2 range over lists of statements:

SEQ-MODIFIED

`0 ` s1 ⇓ `1 : Π1 `1 ` {s̄2} ⇓ `2 : Π2

`0 ` {s1 s̄2} ⇓ `2 : Π1 ∧ Π2

When implemented as a taclet, we let it match the head and the tail of the list,
written as<{.. #s1 ...}>. In this pattern,#s1matches the head and the dots,.. ...2, match
the tail. We also let it match a wrapper formula containing the necessary labels together
with the conjunction of the two collections of equationsΠ1 andΠ2. For each premise,
we create a proof branch by using thereplacewith action. Note how the two last labels
are threaded through the taclet:

rdef_seq {
find (==> <{.. #s1 ...}>(wrapper(lbl0, lbl2, Join(pi1, pi2), lbl3, lbl5)))
replacewith (==> <{#s1}>(wrapper(lbl0, lbl1, pi1, lbl3, lbl4)));
replacewith (==> <{.. ...}>(wrapper(lbl1, lbl2, pi2, lbl4, lbl5)))
};

In the rule for assignments, we must take care of the annotation of the assignment.
Since we know that the fourth argument in the wrapper predicate is the first free label,
we bindlbl1 to it. We then uselbl1 to annotate the assignment. Since we have now
used that label, we must increment the counter of the first free label. We do that by
letting the fifth argument be the successor oflbl1. (Remember that the fifth argument
in the wrapper predicate is the first free label after annotated the statement.) In the taclet
we use avarcond construction to bind the name of the variable matching#x to name.

rdef_assign {
find (==> <{#x = #e;}>
(wrapper(lbl0, lbl1,

Join(EntryEq(lbl1, Exit(lbl0)),

2 The leading two dots match the surrounding context which for our analysis is known to always
be empty. They are however still required by the KeY system.

ExitEq (lbl1, Union(Singleton(name, lbl1),
CutVar(Entry(lbl1), name)))),

lbl1, Succ(lbl1))))
varcond (name quotes #x)
close goal
};

The taclet for if-statements is larger than the previously shown taclets, but since it
introduces no new concepts, it should be easily understood:

rdef_if {
find (==> <{if(#e) #s0 else #s1}>
(wrapper(lbl0, lbl1,

Join(Join(pi0, pi1),
Join(EntryEq(lbl1, Exit(lbl0)),

ExitEq (lbl1, Union(Exit(lbl2), Exit(lbl3))))),
lbl1, lbl5)))

replacewith (==> <{#s0}>(wrapper(lbl0, lbl2, pi0, Succ(lbl1), lbl4)));
replacewith (==> <{#s1}>(wrapper(lbl0, lbl3, pi1, lbl4, lbl5)))

};

This is also the case with the taclet for while-statements and it is, therefore, left
without further description:

rdef_while {
find (==> <{while(#e) #s}>
(wrapper(lbl0, lbl1,

Join(pi0, Join(EntryEq(lbl1, Union(Exit(lbl0),Exit(lbl2))),
ExitEq (lbl1, Entry(lbl1)))),

lbl1, lbl3)))
replacewith (==> <{#s}>(wrapper(lbl1, lbl2, pi0, Succ(lbl1), lbl3)))

};

5.3 Experiments

We have tested the implementation of our analysis on a number of different programs.
For all tested programs the analysis gave the expected entry and exit sets, which is
not that surprising since there is a one-to-one correspondence between the rules of the
analysis and the taclets implementing them.

As an example, consider the minimal programa = 1;, consisting of only an as-
signment. We embed this program in a formula, over which we existentially quantify
the equations,s, the label of the last executed statement,lbl0, and the first free label
after annotated the program,lbl1:

ex lbl0:Label. ex s:Equations. ex lbl1:Label.
<{ a = 1; }>wrapper(Start, lbl0, s, Zero, lbl1)

When applying the rules of the analysis, the first thing that happens in thatlbl0,
s, andlbl1 are instantiated with meta variables. This is done by a built-in rule for

existential quantification. The resulting formula is the following whereL0, S andL1 are
meta variables:

<{ a = 1; }>wrapper(Start, L0, S, Zero, L1)

We know that the KeY system will succeed in automatically applying the rules since
the analysis is complete and, therefore, works for all programs. Being complete is an
essential property for all program analyses and for our analysis it is easy to see that for
any program there exists a set of equations which characterize the reaching information
of the program.

When the proof has been created, we fetch the instantiation of all meta variables,
which for our example are the following.

{
S : Equations =

Join(
EntryEq(L0, Exit(Start)),
ExitEq (L0, Union(Singleton(a, L0), CutVar(Entry(L0), a)))),

L0 : Label = Zero,
L1 : Label = Succ(L0)

}

We take these constraints and let a stand-alone constraint solver solve them. Recall
that the analysis is divided into two parts. The first part, which is done by the KeY
system, is to collect the constraints. The second part, which is done by the constraint
solver, solves the constraints.

The constraint solver extracts the equations from the constraints and solves them
yielding the following sets, which is the expected result:

Entry_0 = {}
Exit_0 = {(a, 0)}

6 Conclusions

It is interesting to see how well-suited an interactive theorem prover such as the KeY
system is to embed the reaching definitions analysis in. One reason for this is that the
rules of the dynamic logic are, in a way, not that different from the rules of the analysis.
They are both syntax-driven, i.e., which rule to apply is decided by looking at the syn-
tactic shape of the current formula or statement. This shows that theorem provers with
free variables or meta variables can be seen as not just theorem provers for a specific
logic but, rather, as generic frameworks for syntactic manipulation of formulas. Having
this view, it is not that strange that we can be rather radical and disregard the usual
semantic meaning of the tactic language, and use it for whatever purpose we want.

The key feature that allows us to implement our analysis is the machinery for meta
variables, that we use to create a bi-directional flow of information. Using meta vari-
ables, we can let our analysis collect almost any type of information. We are, however,

limited in what calculation we can do on the information. So far, we cannot do any cal-
culation on the information while constructing the proof. We cannot, for example, do
any simplification of the set expressions. One possible way of overcoming this would
be to extend the constraint language to not just include syntactic constraints but also
semantic constraints.

When it comes to the efficiency of the implementation of the constraint-generation
part, it is a somewhat open issue. One can informally argue that the overhead of us-
ing the KeY system, instead of writing a specialized tool for the analysis, should be a
constant factor. It might be the case that one needs to optimize the constraint solver
to handle unification constraints in a way that is more efficient for the analysis. An
optimized constraint solver should be able to handle all constraints, generated by the
analysis, in a linear way.

7 Future Work

This work presented in this paper is a starting point and opens up for a lot of future
work:

– Try different theorem provers to see how well the method presented in this paper
works for other theorem provers.

– Further analyse the overhead of using a theorem prover to implement program anal-
yses.

– Modify the calculus of the KeY prover to make use of the information calculated
by the program analysis. We need to identify where the result of the analysis can
help and how the rules of the calculus should be modified to use it. It is when this
is done that the true potential of the integration is unleashed.

– Explore other analyses. We chose to implement thereaching definitions analysis
because it is a well known and simple analysis that is well suited for illustrating
our ideas. Now that we have shown that it is possible to implement a static program
analysis in the KeY system, it is time to look for the analyses that would benefit the
KeY system the most. Among the possible candidates for this are:
• An analysis that calculates the possible side-effects of a method. For example

what objects and variables that may change.
• A path-based flow analysis helping the KeY system to resolve aliasing prob-

lems.
• A flow analysis calculating the set of possible implementation classes of ob-

jects. This would help reducing the branching for abstract types like interfaces
and abstract classes

• A null pointer analysis that identifies object references which are not equal to
null. This would help the system which currently has to always check whether
a reference is equal to null before using it.

One limitation of the sequent calculus in the KeY prover is that the unification con-
straints, used for instantiating the meta variables, can only express syntactic equality.
This is a limitation since it prevents the system from doing any semantic simplification

of the synthesized information. If it was able to perform simplification of the informa-
tion while it is synthesized, not only could it make the whole process more efficient, but
also let it guide the construction of the proof to a larger extent. Useful extensions of the
constraint language are for example the common set operations: test for membership,
union, intersection, difference and so on. In a constraint tableaux setting, the simplifica-
tion of these operations would then take place in the sink objects associated with each
node in the proof.

A more general issue that is not just specific to the work presented in this paper is
on which level static program analysis and theorem proving should be integrated. The
level of integration can vary from having a program analysis run on a program and then
give the result of the analysis together with the program to a theorem prover, to having a
general framework in which program analysis and theorem proving are woven together.
The former kind of integration is no doubt the easiest to implement but also the most
limited. The latter is much more dynamic and allows for an incremental exchange of
information between the calculus of the prover and program analysis.

Acknowledgments

We would like to thank Wolfgang Ahrendt, Martin Giese and Reiner Hähnle for the
fruitful discussions and help with the KeY system. We thank the following people for
reading the draft and providing valuable feedback: Richard Bubel, Jörgen Gustavsson,
Kyle Ross, Philipp Rümmer and the anonymous reviewers.

References

[ABB+04] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel, Martin Giese,
Reiner Hähnle and Wolfram Menzel, Wojciech Mostowski, Andreas Roth, Steffen
Schlager, and Peter H. Schmitt. The KeY tool.Software and System Modeling, 2004.
Online First issue, to appear in print.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.Compilers: Princiles, Techniques,
and Tools.Addison-Wesley, 1986.

[Bec01] Bernhard Beckert. A dynamic logic for the formal verification of Java Card programs.
In I. Attali and T. Jensen, editors,Java on Smart Cards: Programming and Security.
Revised Papers, Java Card 2000, International Workshop, Cannes, France, LNCS
2041, pages 6–24. Springer, 2001.

[BGH+04] Bernhard Beckert, Martin Giese, Elmar Habermalz, Reiner Hähnle, Andreas Roth,
Philipp Rümmer, and Steffen Schlager. Taclets: a new paradigm for constructing in-
teractive theorem provers.Revista de la Real Academia de Ciencias Exactas, Físicas
y Naturales, Serie A: Matemáticas, to appear, 2004. Special Issue on Computational
Logic.

[Fit96] Melvin C. Fitting. First-Order Logic and Automated Theorem Proving. Springer-
Verlag, New York, second edition, 1996.

[Gie01] Martin Giese. Incremental Closure of Free Variable Tableaux. InProc. Intl. Joint
Conf. on Automated Reasoning, Siena, Italy, number 2083 in LNCS, pages 545–560.
Springer-Verlag, 2001.

[NNH99] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin.Principles of Program
Analysis. Springer, 1999.

