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Abstract. Loops are a major bottleneck in formal software verification, because
they generally require user interaction: typically, induction hypotheses or invari-
ants must be found or modified by hand. This involves expert knowledge of the
underlying calculus and proof engine. We show that one can replace interactive
proof techniques, such as induction, with automated first-order reasoning in or-
der to deal with parallelizable loops, where a loop can be parallelized whenever
it avoids dependence of the loop iterations from each other. We develop a depen-
dence analysis that ensures parallelizability. It guarantees soundness of a proof
rule that transforms a loop into a universally quantified update of the state change
information represented by the loop body. This makes it possible to use auto-
matic first order reasoning techniques to deal with loops. The method has been
implemented in the KeY verification tool. We evaluated it with representative case
studies from theAl/A CARD domain.

1 Introduction

It is generally agreed that loops and recursive calls are the main bottleneck in formal
software verification. The source of the problem is that loops and recursion are proof
theoretically handled either with invariant rules or with induction. In both cases, it is
necessary in general to strengthen invariants and induction hypotheses in order to make
proofs go through. There are also many technicalities with those rules that make their
application difficult. A number of heuristic techniques have been developed to guide
induction proofs and to find appropriate induction hypotheses (for example, [6, 8]).

The context of the present work is formal verification of functional properties of se-
quential AvA programs [1]. Here the situation is aggravated by the fact that the above
mentioned techniques have been developed for relatively simple functional program-
ming languages and are not readily applicable to a complex, imperative, object-based
language such aawvi (similar comments apply to C, C++, or C#). Hence, not only is
there a lack of heuristic techniques that help to automate proofs about loapws. irbdit
due to the complexity of loop rules in imperative languages [5] user interaction involves
a high amount of technical knowledge and is extremely expensive.

A recent divide-and-conquer technique for decomposition of induction proofs [15]
works for imperative programs, but it is targeted at simplifying user interaction rather
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than eliminating it. In order to dealutomaticallywith loops in verification of AvA -like
languages there are not too many options at present: abstraction [13] and approximation
[10] are incomplete and in some scenarios even unsound. They also impose limits on
what can be expressed in specifications. If the number of loop iterations is known and
small then it is possible to use symbolic execution with finite unwinding [11]. The state
of the art in AvA verification is, however, that complex user interaction is unavoidable
for almost all loops [7].

In this paper we present arutomaticdeductive verification technique that is ap-
plicable to many loops occurring in practically relevam¢al programs. Like any auto-
matic method it cannot handle all loops, but it is seamlessly integrated with a complete
interactive verification system. In addition, it computes useful information even when
it fails. To make things concrete, we look at an example (where is an expression
with an occurrence af):  for (int i = 0; i < a.length; i++)al[i] = e(i);

The effect of this piece of code is simply to initialize all elements of the asray
with the expressioe(i) at indexi. Since the length of is in general unknown, it is
not possible to deal with this loop by finite unwinding. An abstraction of this program
has difficulties to record that the valuelength depends om. On the other hand, in
most cases it is overkill to use induction on such a simple problem. In order to describe
the effect of such loops it is usually sufficient to be able to quantify universally over
state update expressions that are performed in parallel. From a proof theoretic point
of view, quantified state modifiers can be handled by skolemization and simplification
[17], hence, they are amenable to automated proof search.

In general, the initialization, guard and step expressions, as well as the loop body
could be more complicated than in the example above. We are looking for a technique
that does not rely on the target program being in a particular syntactic form. Of course,
we need to make certain assumptions to ensure that the effect of a loop is expressible
as a quantified update. This problem is closely related to loop vectorization and par-
allelization and it is possible to use notions developed in these fields. The main issue
is to exclude certain data dependencies. For example, in the cagg ef a[i - 1]
the code above cannot be transformed into a quantified state update, because there exist
dependencies between the updates.

The contribution of this paper is a deductive verification method for treating foops
based on the ideas just sketched. Its main properties are:

RobustnessThe target program needs not to be in a particular syntactic form. This is
achieved by computing the accumulated effect of the expressions and statements
occurring in the loop by symbolic executidreforechecking the dependencies in
the loop body (Section 4 and Section 5).

SoundnessThere is an automatic dependence analysis that guarantees sound applica-
bility (Section 6).

Automation Proof theoretic treatment of the effect of loops is not by induction but by
universally quantified state modification and is automatic (Section 7).

1 The technique is applicable both to for- and while-loops. In this presentation we concentrate
on the former to make the presentation more concise, and because for-loops are much more
common in our application domaimvA CARD.



Relevance The method applies not only to a few academic examples, but to a substan-
tial number of loops in realistic programs. An experimental evaluation of a number
of realistic AvA CARD programs confirms this (Section 9).

2 Basic Definitions

The platform for our experiments is the KeY tool [1], which features an interactive
theorem prover for formal verification of sequentiaVd programs.

2.1 Dynamic Logic for Java CARD

In KeY the target program to be verified and its specification are both modeled in an
instance of a dynamic logic (DL) [12] calculus calleszd DL [3]. Java DL extends

other variants of DL used for theoretical investigations or verification purposes, because
it handles such phenomena as side effects, aliasing, object types, exceptions, and finite
integer types. AVA DL axiomatizes full dvaA minus multi-threading, floating point
types, and dynamic class loading.

Deduction in the &vAa DL calculus is based on symbolic program execution and
simple program transformations and so is close to a programmer’s understanding of
Java. It can be seen as a modal logic with a modality for every progranm, where
(p) refers to the final state (if terminates normally) that is reached after executing

The program formula(p) @ expresses that the progranterminates in a state in
which @ holds without throwing an exception. A formuig — (p) Y is valid if for
every states satisfying preconditiomp a run of the program starting in$ terminates
normally, and in the terminating state the postconditjoimolds.

The programs inAlA DL formulas are basicallya¥a code. Each rule of theaya
DL calculus specifies how to execute symbolically one particular statement, possibly
with additional restrictions. When a loop or a recursive method call is encountered, it
is in general necessary to perform induction over a suitable data structure. In this paper
we show how induction can be avoided in the case of parallelizable loops.

2.2 State Updates

In Java (as in other object-oriented programming languages), different object type vari-
ables may refer to the same object. This phenomenon, called aliasing, causes difficulties
for the handling of assignments in a calculus feval DL. For example, whether or not

the formulao1 . f = 1, where= denotes equality, holds after (symbolic) execution of the
assignment2.f = 2;, depends on whethen ando2 refer to the same object. There-
fore, AvA assignments cannot be symbolically executed by syntactic substitution. In
the Ava DL calculus a different solution is used, based on the notion of (stgte)
dates

Definition 1. Atomic updatesare of the formioc :=val , whereval is a logical term
without side effects andc is either (i) a program variable, or (ii) a field access.f ,

or (iii) an array access[i] . Updates may appear in front of any formula, where they
are surrounded by curly brackets for easy parsing. The semantifisof.=val }@is

the same as that dfoc=val; )@



Definition 2. Generalupdatesare defined inductively based on atomic updates! If
and U’ are updates then so are: (), U’ (parallel compositio) (i) U; U’ (sequential

composition), (i) YU (applied on updaje(iv) \if (b) {U}, where b is a quantifier-
free formula ¢onditional executiop (v) \for T s U(S), where s is a variable over a
well-ordered type T andl(s) is an update with occurrences ofgu@ntification.

The semantics of sequential updates, conditional updates and updates applied on
updates is obvious; the meaning of a parallel update is the simultaneous application of
all its constituent updates except when two left hand sides refer to the same location:
in this case the syntactically later update wins. This models natural program execu-
tion flow. The semantics §ftor T 5 U(s) is the parallel execution of all updates in
UxeT {3:=X; U(s)}. As for parallel updates, a last-win clash-semantics is in place: the
maximal update with respect to the well-order on T and the syntactic order within each
U(s) wins.

The restriction that right-hand sides of updates must be side effect-free is not limiting:
by introducing fresh local variables and symbolic execution of complex expressions the
Java DL calculus rules normalize arbitrary assignments so that they meet the restric-
tions of updates. A full formal treatment of updates is in [17].

3 Ouitline of the Approach

Let us look at the following example:

for (int i = 1; i < a.length; i++)
if (c '=0) a[i] = bl[i+1];
else a[i] = b[i-1];

In a first step the loop initialization expression is transformed out of the loop and sym-
bolically executed. The reason is that the initialization expression might be complex
and have side effects. This results in a stgite {i :=1}. The remaining loop now has

the form:for (; i < a.length; i++)...

We proceed to symbolically execute the loop body, the step expression and the guard
for a generic value of. In order to do this correctly, we must eliminate from the cur-
rent state all locations that can potentially be modified in the body, step, or guard. In
Section 4 we describe an algorithm that approximates such a set of locations rather pre-
cisely. Applied to the present example we obtaianda[i] as modifiable locations.
Consequently, generic execution of the loop body, step, and guard starts in the empty
state. Note that the set of modifiable locations does not include, for examileis is
important, because |§ contains, say; :=1, we would start the execution in the state
{c:=1} and the resulting state would be much simplified.

In our example, symbolic execution of one loop iteration starting in the empty state
givesS’ ={i:=i+1, \if (c#0){a[i]:=b[i+1]},\if (c=0){ali):=b[i-1]}},
where the step and guard expressions were executed as well.

The next step is to check whether the state updatesulting from the execution
of the generic iteration contains dependencies that make it impossible to represent the
effect of the loop as a quantified update. Bbthis is the case if and only if is 0 anda
andb are the same array. In this case, the body amounts to the statement a[i-1]



which contains a data dependence that cannot be parallelized. All other dependencies
can be captured by parallel execution of updates with last-win clash-semantics. The
details of the dependence analysis are explained in Section 6. In the example it results
in a logical constraint that, among other things, contains the disjunction ¢f0 and

a # b. A further logical constraintD strengthening” is computed which, in addition,
ensures that the loop terminates normally. In the example, normal termination is ensured
by a andb not beingnull andb having enough elements, thatisjength > a.length.

At this point the proof is split into two cases using cut formdlaUnder the as-
sumption? the loop can be transformed into a quantified updat® i$ not provable,
then the loop must be also tackled with a conventional induction rule, but one may use
the additional assumptioR?, which may well simplify the proof.

For the sake of illustration assume ngwand S’ both contain{c:=1} and the
termination constraint irD holds. In this case, we can additionally simpli§y to
{c:=1,i:=i+41, ali] :=Db[i+1]}.

In the final step we synthesize from (i) the initial statg(ii) the effect of a generic
execution of an iteratiofs” and (iii) the guard, a state update, where the loop variable
is universally quantified. The details are explained in Section 7. The result for the ex-
ample is:

\forint I; {i:=I1}{\if (i >1Ai<a.length){c:=1, i:=i+1, ali]:=b[i+1]}}

The for-expression is a universal first order quantifier whose scope is an update that
contains occurrences of the variahlésee Def. 2 and [17]). Subexpressions are first
order terms that are simplified eagerly while symbolic execution proceeds. First order
guantifier elimination rules based on skolemization and instantiation are applicable,
for example, for any positive valugsuch thatj < a.length we obtain immediately

the update[j]:=b[j+1] by instantiation. Proof search is performed by the usual first
order strategies without user interaction.

4 Computing state modifications

In this section we describe how we compute the state modifications performed by a
generic loop iteration. As a preliminary step we move the initialization out of the loop
and execute it symbolically, because the initialization expression may contain side-
effects. We are left with a loop consisting of a guard, a step expression and a body:

for (; guard; step) body (2)

We want to compute the state modifications performed by a generic iteration of
the loop. A single loop iteration consists of executing the body, evaluating the step ex-
pression, and testing the guard expression. This behavior is captured in the following
compound statement whetemny iS needed, becausevd expressions are not state-
ments.

body; step; boolean dummy = guard; (2)



We proceed to symbolically execute the compound statement (2) for a generic value
of the loop variable. This is quite similar to computing the strongest post condition of a
given program. Platzer [16] has worked out the details of how to compute the strongest
post condition in the specifi®ya program logic that we use and our methods are based
on the same principles. Our method handles the fragmentwef that the symbolic
execution machinery of KeY handles, which is/d CARD.

Letp be the code in (2). The main idea is to try to prove validity of the program for-
mula ${p) F, whereF is an arbitrary but unspecified non-rigid predicate that signifies
when to stop symbolic execution. Symbolic execution sfarting in states eventually
yields a proof tree whose open leaves are of the fbrm UF for some update ex-
pression. The predicaté- cannot be shown to be true or false in the program logic.
Therefore, after all instructions inhave been executed, symbolic execution is stuck.
At this stage we extract two vectdrsand 7/ consisting of correspondirigand U from
all open leaf nodes. Different leaves correspond to different computation branches in
the loop body.

Example 1.Consider the following statemegt
if (1 >2) af[i] =0 elseali] =1; 1 =1 + 1;

After the attempt to provép) F becomes stuck, i.e. all instructions have been symboli-

cally executed, there are two open leaves:
VAI>2—{ali1:=0,i:=i+1}F
VAI$2—-{alil:=11i=i+1}F

whereV stands for-(a = null) A i >0 A i < a.length. From these we extract the

following vectors:

=NVAI>2ZV AIF2)

= ({ali]:=0,i:=1+1}, {a(i]l:=1,i:=i4+1})

Ql i

O

If the loop iteration throws an exception, abruptly terminates the loop, or when the
automatic strategies are not strong enough to execute all instructipis @dompletion,
some open leaf will contain unhandled instructions and be of a form different from
I — UF. We call thesdailed leavesn contrast to leaves of the forim— UF that are
calledsuccessful

If a failed leaf can be reached from the initial state, our method cannot handle the
loop. We must, therefore, make sure that our method is only applied to loops for which
we have proven that no failed leaf can be reached. In order to do this we create a vector
F consisting of thd™ extracted from all failed leaves and let the negatioff dfecome
a condition that needs to be proven when applying our method.

Example 2.In Example 1 only the successful leaves are shown. When all instructions
have been symbolically executed, there are in addition failed leaves of following form:

a=null — ... F
aznull Ai<O —... F
aZnull Aiga.length— ... F



From these we extract the following vector:

F=(a=null,aZnull Ai<0,aznull Ai#a.length)
O

Note that symbolic execution discards any code that cannot be reached. As a conse-
quence, an exception that occurs at a code location that cannot be reached from the
initial state will not occur in the leaves of the proof tree. This means that our method is
not restricted to code that cannot throw any exception, which would be very restrictive.
So far we said nothing about the state in which we start a generic loop iteration.
Choosing a suitable state requires some care, as the following example shows.

Example 3.Consider the following code:

c = 1;

i =0;

for (; i < a.length; i++) {
if (¢ '=0) a[i] = 0;
b[i] = 0; }

At the beginning of the loop we are in stafe= {c:=1, i:=0}. It is tempting, but
wrong, to start the generic loop iteration in this state. The reason is tieest a specific
value, so one iteration would yielfk[01:=0,b[0]:=0, i:=1}, which is the result
after thefirst iteration, not a generic one. The problem is tiatontains information
that is not invariant during the loop. Starting the loop iteration in the empty state is
sound, but suboptimal. In the example, we getf{ (c # 0) {a[i]:=0}, b[i]:=0,
i:=1+ 1}, which is unnecessarily imprecise, since we know thistequal to 1 during

the entire execution of the loop. O

We want to use as much information as possible from the siat@t the beginning of

the loop and only remove those parts that are not invariant during all iterations of the
loop. Executing the loop in the largest possible state corresponds to performing dead
code elimination. When we reach a loop of the form (1) in si&ige we proceed as
follows:

1. Executeboolean dummy = guard; in stateSini¢ and obtainS. We need to evaluate
the guard since it may have side effects. Evaluation of the guard might cause the
proof to branch, in which case we apply the following stepsaohbranch. If our
method cannot be applied to at least one of the branches we backtrack t§gtate
and use the standard rules to prove the loop.

2. Compute the vectols, 7 and ¥ from (2) starting in state.

3. Obtains’ by removing froms all those locations that are modified in a successful
leaf, more formally:s’ = {(¢:=e) € S | £ ¢ mod )}, wheremod 1) is the set of
locations whose value i differs from its value ins.

4. If S = S’ then stop; otherwise let becomes’ and goto step 2.

The algorithm terminates since the number of locations that can be removed from the
initial state is bound both by the textual size of the loop and all methods called by
the loop. and, in case the state does not contain any quantified update, the size of the
state itself. The final state of this algorithm is a greatest fixpoint containing as much
information as possible from the initial stageLet us call this final statgie.



Example 4.Example 3 yields the following sequence of states:

RoundStart state  |State modifications [New statéRemark
1 {c:=1,1:=0}{a101:=0,p[01:=0,1:=1} |{c:=1}
2 {c:=1} {a1i1:=0,b[1i]:=0,i:=i+1}|{c:=1} |Fixpoint

a

Computing the semod 7I) can be difficult. Assume containsa(c] :=0 and U
containsa[i]:=1. If i andc can have the same value then:] should be removed
from S, otherwise it is safe to keep it. In general it is undecidable whether two vari-
ables can assume the same value. One can use a simplified version of the dependence
analysis described in Section 6 (modified to yield always a boolean answer) to obtain
an approximation of location collision. The dependence analysis always terminates so
this does not change the overall termination behavior.

A similar situation occurs whes containsa. £:=0 and I containsp. £:=1. If a
andb are references to the same object thenmust be removed from the new state.
Here we make a safe approximation and remouveunless we can show thatandb
refer to different objects.

5 Loop Variable and Loop Range

For the dependence analysis and for creating the quantified state update later we need to
identify the loop variable and the loop range. In addition, we need to know the value that
the loop variable has in each iteration of the loop, that is, the function from the iteration
number to the value of the loop variable in that iteration. This is a hard problem in
general, but whenever the loop variable is incremented or decremented with a constant
value in each iteration, it is easy to construct this function. At present we impose this as
a restriction: the update of the loop variable must have the fori 1 op e, wherel
is the loop variable and is invariant during loop execution. It would be possible to let
the user provide this function at the price of making the method less automatic.
To identify the loop variable we compute a set of candidate pairs) where1
is a location that is assigned the expressipsatisfying the above restriction, in all
successful leaf nodes of the generic iteration. Formally, this set is defingd,ag |
Nqezil=e} € U}. The loop variable is supposed to have an effect on the loop range;
therefore, we remove all those locations from the candidate set that do not occur in the
guard. If the resulting set consists of more than one location, we arbitrarily choose one.
The remaining candidates should be eliminated, because they will all cause data
flow-dependence. A candidate is eliminated by transforming its expression into one
which is not dependent on the candidate location. For example, the candidtzte-
duced by the assignment= 1 + c¢;, can be eliminated by transforming the assignment
into1 = init + I * c;, whereinit is the initial value ofi and1 the iteration number.

Example 5.Consider the code in Example 1 which gives the following vedibof
updates occurring in successful leaves:

U= ({al11:=0,1:=i+1},{ali1:=1,1:=i+1})



We identify the location as the loop variable, assuming thaiccurs in the guard. O

To determine the loop range we begin by computing the specification of the guard in a
similar way as we computed the state modifications of a generic iteration in the previous
section. We attempt to provéboolean dumny = guard;) F. From the open leaves of

the forml" — {dummy:=e, ...} F, we create the formul&Swhich characterizes when

the guard is true. FormalyGSis defined asy/- (I A e = true). The formulaGF
characterizes when the guard is not successfully evaluated. WE lle¢ the disjunction

of all " from the open leaves that are not of the form above.

Example 6.Consider the following guarg = i < a.length. When all instructions in
the formula(boolean dumny = g;) F have been symbolically executed, there are two
successful leaves:

a#Znull A i<a.length — {dummy:=true}F
aZnull Ai¢a.length — {dummy:= false}F

From these we extract the following formu&s (before simplification):

(a# null A i<a.length A true =true)V
(a#null Ai¢a.length A false = true)

When the instructions have been executed, there is also the failecdeafll — ... F.
From it we extract the following formul&F = a = null. O

After having computed the specification of the guard and identified the loop variable
we determine the initial valustart of the loop variable from the initial statgp. If
an initial value cannot be found we let it be unknown. We try to determine the final
value end of the loop variable from the successful leaves of the guard specification.
Currently, we restrict this to guards of the formop e. If we cannot determine the
final value, we let it be unknown. We had already computedstapvalue during loop
variable identification.

The formulaLR characterizes when the value pfs within the loop range. It is
defined as follows, which expresses that there exists an iteration with the particular
value of the loop variable and that the iteration can be reached:

LR=GSA In. ( n>0 A i = start+ nxstepA )

¥m. 0 < m< n— {i:=start+ mxstegGS

It is important that the loop terminates, otherwise, our method is unsound. We,
therefore, create a termination constraifitthat needs to be proven when applying our
method. The termination constraint says that there exists a number of iteratiafier
which the guard formula evaluates to false. The consttdins defined as:

LT =3n.n> 0A {i:=start+nxsteg -GS

6 Dependence Analysis

Transforming a loop into a quantified state update is only possible when the iterations
of the loop are independent of each other. Two loop iterations are independent of each



other if the execution of one iteration does not affect the execution of the other. Accord-
ing to this definition, the loop variable clearly causes dependence, because each iteration
both reads its current value and updates it. We will, however, handle the loop variable by
quantification. Therefore, it is removed from the update before the dependence analysis
is begun. The problem of loop dependencies was intensely studied in loop vectoriza-
tion and parallelization for program optimization on parallel architectures. Some of our
concepts are based on results in this field [2, 18].

6.1 Classification of Dependencies

In our setting we encounter three different kinds of dependatate;flow-dependence
data anti-dependen¢anddata output-dependence

Example 7.1t is tempting to assume that it is sufficient for independence of loop itera-
tions that the final state after executing a loop is independent of the order of execution,
but the following example shows this to be wrong:

for (int i = 0, sum = 0; i < a.length; i++) sum += al[il;

The loop computes the sum of all elements in the agrashich is independent of the
order of execution, however, running all iterations in parallel gives the wrong result,
because reading and writing @fn collide. a

Definition 3. Let S; be the final state after executing a generic loop iteration over
variablei during which it has value J and let be the order on the type of

There is adata input-dependenbetween iterations K L iff Sk writes to a location
(i.e., appears on the left-hand side of an update) that is read (appears on the right hand
side or in a guard of an update) 6. . We speak oflata flow-dependenaghen K< L
and of data anti-dependencerhen K> L. There isdata output-dependentetween
iterations K= L iff Sk writes to a location that is overwritten if5 .

Example 8.When executing the second iteration of the following loop, the location
a[1], modified by the first iteration, is read, indicating data flow-dependence:

for (int i = 1; i < a.length; i++) ali] = ali - 11;
The following loop exhibits data output-dependence:
for (int i = 1; i < a.length; i++) last = a[i];

Each iteration assigns a new value tet. When the loop terminatessst has the value
assigned to it by the last iteration. O

Loops with data flow-dependencies cannot be parallelized, because each iteration must
wait for a preceding one to finish before it can perform its computation.

In the presence of data anti-dependence swapping two iterations is unsound, but
parallel execution is possible provided that the generic iteration acts on the original state
before loop execution begins. In our translation of loops into quantified state updates
in Section 7 below, this is ensured by simultaneous execution of all updates. Thus,
we can handle loops that exhibit data anti-dependence. The final state of such loops



depends on the order of execution, so independence of the order of executions is not
only insufficient (Example 7) but even unnecessary for parallelization.

Even loops with data output-dependence can be parallelized by assigning an ordinal
to each iteration. An iteration that wants to write to a location first ensures that no
iteration with higher ordinal has already written to it. This requires a total order on the
iterations. As we know the step expression of the loop variable, this order can easily
be constructed. The order is used in the quantified state update together with a last-win
clash-semantics to obtain the desired behavior.

6.2 Comparison to Traditional Dependence Analysis

Our dependence analysis is different from most existing analyses for loop paralleliza-
tion in compilers [2, 18]. The major difference is that these analyses must not be ex-
pensive in terms of computation time, because the user waits for the compiler to finish.
Traditionally, precision is traded off for cost. Here we use dependence information to
avoid using induction which comes with an extremely high cost, because it typically
requires user interaction. In consequence, we strive to make the dependence analysis as
precise as possible as long as it is still fully automatic. In particular, our analysis can
afford to try several algorithms that work well for different classes of loops.

A second difference to traditional dependence analysis is that we do not require a
definite answer. When used during compilation to a parallel architecture, a dependence
analysis must give a Boolean answer as to whether a given loop is parallelizable or not.
In our setting it is useful to know that a loop is parallelizable relative to satisfaction of a
symbolic constraint. Then we can let a theorem prover validate or refute this constraint,
which typically is a much easier problem than proving the original loop.

6.3 Implementation

Our dependence analysis consists of two parts. The first part analyzes the loop and
symbolically computes aonstraintthat characterizes when the loop is free of depen-
dencies. The advantage of the constraint-based approach is that we can avoid to deal
with a number of very hard problems such as aliasing: for example, locationsnd
b[i] are the same ift andb are references to the same array, which can be difficult
to determine. Our analysis side-steps the aliasing problem simply by generating a con-
straint saying thaif a is not the same array asthenthere is no dependence. The
second part of the dependence analysis is a tailor-made theorem prover that simplifies
the integer equations occurring in the resulting constraints as much as possible.

The computation of the dependence constraints uses the vEcami 7/ that rep-
resent successful leaves in the symbolic execution of the loop body and were obtained
as the result of a generic loop iteration in Section 4. ILeand Uy be the precondi-
tion, respectively, the resulting update in thth leaf. If the preconditions of two leaves
are true for different values in the loop range we need to ensure that the updates of the
leaves are independent of each other (Def. 3). Formally, if there exist two distinct values
K andL in the loop range and (possibly identical) leavemds, for which{i:=K}I,
and{i:=L}ls are true, then we need to ensure independenc®; afnd Us. We run
our dependence analysis @ and Us to compute the dependence constraint



We do this for all pairs of leaves and define the dependence constraint for the entire
loop as follows wheré& R is the loop range predicate:

€= A(FK,L. (K#LA{1:=K}LRAT) A{i:=L}(LRATS))) = Gs)

rs

Example 9.Consider the following loop that reverses the elements of the array
int half = a.length / 2 - 1;
for (int 1 = 0; 1 <= half; i++) {
int tmp = ali];
ali] = ala.length - 1 - 1i1];
ala.length - 1 - 1] = tmp; }

When running the dependence analysis we get the following constraint:
(00 = a.length <2V half*2< a.length

For this loop, the statgjer containshalf:=a.length / 2 - 1 and the constraint is,
therefore, simplified t@.length <2 V (a.length/2)*2 < a.length+ 2. This is sim-
plified totrue which makes” true and means that the loop does not contain any depen-
dencies that cannot be handled by our method. d

7 Constructing the State Update

If we can show that the iterations of a loop are independent of each other (i.e., the con-
straintC defined in the previous section holds), we can capture all state modifications

of the loop in one update (Def. 2). Concretely, we use the following quantified update

(T is the type of the loop variable LR, 'y, U, were defined in Sections 4 and 5):

Uoop = \for T I; {i:=I1}{\if (LR) {U\if o) {u}}} (3)

The conditional update inside (3) corresponds to one loop iteration, whieas the
valuel. In each state only onle can be true so we do not need to ensure any particular
order of the updatesl.

The guard_R ensures that is within the loop range. We must take care when using
last-win clash-semantics to handle data output-dependence. When the step is positive,
the iteration with the highest value of the loop variable should have priority over all
other iterations. This is ensured by the standard well-order omthreidteger types.

A complication arises when the step is negative. Then we need to reverse the order
so that the iteration with the lowest value of the loop variable has priority. Since each
type has a fixed order we need to change the state update instead: it is sufficient to
replace in (3) the update=1 with i:= —1.

8 Using the Analysis in a Correctness Proof

When we encounter a loop during symbolic execution we analyze it for parallelizability
as described above and compute the dependence constraint. We replace the loop by (3)



if no failed leaves for the iteration statement or the guard expression can be reached
(see Section 4), the loop terminates (formulg see Section 5), and the dependence
constraintC in Section 6.3 is valid. Taken together, this yields:

D=-(3l. {1:=1}(LRA\/ F)) A=GFALT A C

If © does not hold, we fall back to the standard rules to verify the loop (usually
induction). In many cases it is not trivial to immediately validate or ref0t&hen we
perform a cut on? in the proof and replace the loop by the quantified state update
Uioop (3) in the proof branch wher® is assumed to hold. The general outline of a
proof using a cut orD is as follows:

fnotlr = D,
use standard induction D = Uloop(...)P
r= U{for ... ; ...5@D T, D = Ulfor ... ; ...)q)cut
r = Uffor ... ; ...)0

If we can validate or refuteD we can close one of the two branches. Typically,
this involves to show that there is no aliasing between the variables occurring in the
dependence constraint. Even when it is not possible to prove or to tBfate analysis
is useful, becaus® in succedent of the left branch can make it easier to close.

9 Evaluation

We evaluated our method with three representatixa JCARD programs [14]:De-

Money, SafeApplet andIButtonAPI that together consist of ca. 2200 lines of code (not
counting comments). In these programs there exist 17 loops. Out of these, our method
can be applied to five (sometimes, a simple code transformation likee to v =

v0 + 1 * e is required). Additionally, four loops can be handled if we allow object
creation in the quantified updates (which is currently not realized). The remaining eight
loops cannot be handled because they contain abrupt termination and irregular step
functions. The results are summarized in the following table:

DeMoney |SafeApplet |IButtonAPI |Total
LoC 1633 514 102 2249
Size (kB)|182 22 3 207
#loops |10 6 1 17
handled |4 0 1 5
with ext. |3 1 0 4
remaining3 5 0 8

Allloops in the row “handled” are detected automatically as parallelizable and are trans-
formed into quantified updates. The evaluation shows that a considerable number of
loops in realistic legacy programs can be formally verified without resorting to interac-
tive and, therefore, expensive techniques such as induction. Interestingly, the percentage



of loops that can be handled differs drastically among the three programs. A closer in-
spection reveals that the reason is not that, for example, all the loopsfdApplet

are inherently not parallelizable. Some of them could be rewritten so that they become
parallelizable. This suggests to develop programming guidelines (just as they exist for
compilation on parallel architectures) that ensure parallelizability of loops.

10 Conclusion

We presented a method for formal verification of loops that works by transforming
loops into automizable first order constructs (quantified updates) instead of interactive
methods such as invariants or induction. The approach is restricted to loops that can be
parallelized, but an analysis of representative programs fromatlxe GARD domain

shows that such loops occur frequently. The method can be applied to most initialization
and array copy loops but also to more complex loops as shown by Example 9.

The method relies on the capability to represent state change information effecting
from symbolic execution of imperative programs explicitly in the form of syntactic up-
dates [3, 17]. With the help of updates the effect of a generic loop iteration is represented
so that it can be analyzed for the presence of data dependencies. Ideas for the depen-
dency analysis are taken from compiler optimization for parallel architectures, but the
analysis is not merely static. Loops that are found to be parallelizable are transformed
into first order quantified updates to be passed on to an automated theorem prover.

A main advantage of our method is its robustness in the presence of syntactic vari-
ability in the target programs. This is achieved by performing symbolic execution be-
fore doing the dependence analysis. The method is also fully automatic whenever it is
applicable and gives useful results in the form of symbolic constraints even if it fails.

Future Work The analysis can be improved in various ways. One example is the func-
tion from iteration number to value of the loop variable (see Section 5). In addition,
straightforward automatic program transformations that reduce the amount of depen-
dencies (for example; += ¢; intov = vinit + i * e;) could be derived by looking

at the updates from a generic loop iteration. We also intend to develop general pro-
gramming guidelines that ensure parallelizability of loops. Recent work on automatic
termination analysis [9] could be adapted to the present setting for proving the termina-
tion constraint in Section 5.

Critical dependencies exhibited during the analysis are likely to cause problems as
well in a proof attempt based on invariants or induction, so one could try to use the
obtained information on dependencies to guide the generalization of loop invariants.

At the moment we observena integer semantics only by checking for overflow.
The integer model could be made more precise by computing all integer operators mod-
ulo the the size of the underlying integer type. This would require changes in the de-
pendence analysis; thevd DL calculus covers full va integer semantic already [4].

Finally, the discussion in this paper stops after a loop has been transformed into
a quantified update. So far, our theorem prover has limited capabilities for automatic
reasoning over first order quantified updates. Since quantified updates occur in many
other scenarios it is worth to spend more effort on that front.
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